On lattice point counting in $$\varDelta $$-modular polyhedra

نویسندگان

چکیده

Let a polyhedron P be defined by one of the following ways: and let all rank order minors A bounded $$\varDelta $$ in absolute values. We show that short rational generating function for power series $$\begin{aligned} \sum \limits _{m \in \cap {{\,\mathrm{{\mathbb {Z}}}\,}}^n} {{\,\mathrm{{\mathbf {x}}}\,}}^m \end{aligned}$$ can computed with arithmetical complexity O\left( T_{{\mathrm{SNF}}}(d) \cdot d^{k} d^{\log _2 \varDelta }\right) , where k are fixed, $$d = \dim P$$ $$T_{{\mathrm{SNF}}}(m)$$ is computing Smith Normal Form $$m \times m$$ integer matrices. In particular, n$$ case (i), n-k$$ (ii). The simplest examples polyhedra meet conditions (i) or (ii) simplices, subset sum polytope knapsack multidimensional polytopes. Previously, existence polynomial time algorithm varying dimension considered class problems was unknown already simplicies ( $$k 1$$ ). apply these results to parametric polytopes step representation $$c_P({{\,\mathrm{{\mathbf {y}}}\,}}) |P_{{{\,\mathrm{{\mathbf {y}}}\,}}} {Z}}}\,}}^n|$$ $$P_{{{\,\mathrm{{\mathbf {y}}}\,}}}$$ polytope, whose structure close cases (ii), even if not fixed. As another consequence, we coefficients $$e_i(P,m)$$ Ehrhart quasi-polynomial \left| mP {Z}}}\,}}^n\right| _{j 0}^n e_j(P,m)m^j polynomial-time algorithm, fixed .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Lattice Points in Polyhedra

We present Barvinok’s 1994 and 1999 algorithms for counting lattice points in polyhedra. 1. The 1994 algorithm In [2], Barvinok presents an algorithm that, for a fixed dimension d, calculates the number of integer points in a rational polyhedron. It is shown in [6] and [7] that the question can be reduced to counting the number of integer points in a k-dimensional simplex with integer vertices ...

متن کامل

Counting Lattice Points of Rational Polyhedra

The generating function F (P ) = ∑ α∈P∩ZN xα for a rational polytope P carries all essential information of P . In this paper we show that for any positive integer n, the generating function F (P, n) of nP = {nx : x ∈ P} can be written as F (P, n) = ∑ α∈A Pα(n)x, where A is the set of all vertices of P and each Pα(n) is a certain periodic function of n. The Ehrhart reciprocity law follows autom...

متن کامل

Simple Explicit Formula for Counting Lattice Points of Polyhedra

Given z ∈ C and A ∈ Z, we consider the problem of evaluating the counting function h(y; z) := P { z |x∈Z;Ax=y, x≥0}. We provide an explicit expression for h(y; z) as well as an algorithm with possibly numerous but very simple calculations. In addition, we exhibit finitely many fixed convex cones of R explicitly and exclusively defined by A such that for any y ∈ Z, the sum h(y; z) can be obtaine...

متن کامل

Dedekind–Carlitz Polynomials as Lattice-Point Enumerators in Rational Polyhedra

We study higher-dimensional analogs of the Dedekind–Carlitz polynomials c (u, v; a, b) := b−1 X

متن کامل

Unfolding Lattice Polygons on Some Lattice Polyhedra∗

We consider the problem of unfolding lattice polygons embedded on the surface of some classes of lattice polyhedra. We show that an unknotted lattice polygon embedded on a lattice orthotube or orthotree can be convexified in O(n) moves and time, and a lattice polygon embedded on a lattice Tower of Hanoi or Manhattan Tower can be convexified in O(n) moves and time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optimization Letters

سال: 2021

ISSN: ['1862-4480', '1862-4472']

DOI: https://doi.org/10.1007/s11590-021-01744-x